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Abstract. We consider the implications from the possibility that the recently observed state
X(3872) is a meson-antimeson molecule. We write an effective Lagrangian consistent with the
heavy-quark and chiral symmetries needed to describe X(3872) and study its properties.
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The unusual properties of X(3872) state, recently discovered in the decay X(3872)→
J/ψπ+π−, invited some speculations regarding its possible non-cc̄ nature [1]. Since its
mass lies tantalizingly close to the D∗0D0 threshold of 3871.3 MeV, it is tempting to
interpret X(3872) as a D∗0D0 molecule with JPC = 1++ quantum numbers [2, 3]. Such
molecular states can be studied using techniques of effective field theories (EFT).
This study is possible due to the multitude of scales present in QCD. The extreme

smallness of the binding energy, Eb = (mD0 +mD0∗)−MX = −0.6±1.1 MeV, suggests
that this state can play the role of the “deuteron” [2] in meson-meson interactions.
This fact allows us to use methods similar to those developed for the description of
the deuteron, with the added benefit of heavy-quark symmetry. The tiny binding energy
of this molecular state introduces an energy scale which is much smaller than the mass
of the lightest particle, the pion, whose exchange can provide binding. Then, a suitable
effective Lagrangian describing such a system contains only heavy-meson degrees of
freedom with interactions approximated by local four-boson terms constrained only by
the symmetries of the theory. This approach is similar to the Weinberg’s EFT description
of the deuteron [4]. While its predictive power is somewhat limited, several model-
independent statements can be made. For instance, possible existence of a molecular
state inD∗0D0 channel does not imply a molecular state in theD∗0D∗0 orD0D0 channels.
The general effective Lagrangian consistent with heavy-quark spin and chiral sym-

metries can be written as [5]
L = L2+L4, (1)

where the two-body piece that describes the strong interactions of the heavy mesons P
and P∗ (P= B,D) containing one heavy quark Q is well known [6]:
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where the ellipsis denotes terms with more derivatives or including explicit factors
of light quark masses, or describing pion-H interactions and antimeson degrees of

freedom H(Q)
a and H(Q)†

a . A superfield describing the doublet of pseudoscalar heavy-

meson fields Pa =
(
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and their vector counterparts with v ·P∗(Q)
a = 0, is defined as
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the P−P∗ mass difference Δ≡mP∗ −mP = −2λ2/mP. The four-body piece is [5]
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where Γiμ = (γμ ,γμγ5). Heavy-quark spin symmetry implies that the same Lagrangian
governs the four-boson interactions of all P(∗)

a = D(∗) states. Indeed, not all of these
states are bound. Here we shall concentrate on X(3872), which we assume to be a bound
state of two neutral bosons, Pa ≡ P0 ≡ D [2]. Evaluating the traces yields for the DD∗
sector

L4,DD∗ = − C1D
(c)†D(c)D∗(c)†

μ D∗(c)μ −C1D∗(c)†
μ D∗(c)μD(c)†D(c)

+ C2D
(c)†D∗(c)

μ D∗(c)†μD(c) +C2D
∗(c)†
μ D(c)D(c)†D∗(c)μ + . . . (4)

As we show later, the resulting binding energy depends on a linear combination of C1
and C2. Similarly, one obtains the component Lagrangian governing the interactions of
D and D,

L4,DD =C1D
(c)†D(c)D(c)†D(c). (5)

Clearly, one cannot relate the existence of the bound state in the DD∗ and DD channels,
as the properties of the latter will depend only onC1.
The lowest-energy bound state of D and D∗ is an eigenstate of charge conjugation,

|X±〉 =
1√
2

[|D∗D〉± |DD∗〉] . (6)

To find the bound-state energy of X(3872) with JPC = 1++, we shall look for a pole of
the transition amplitude T++ = 〈X+|T |X+〉. Defining DD∗-DD∗ transition amplitudes,

T11 = 〈D∗D|T |D∗D〉, T12 = 〈D∗D|T |DD∗〉,
T21 = 〈DD∗|T |D∗D〉, T22 = 〈DD∗|T |DD∗〉, (7)

we also have to include a “bubble” resummation of loop contributions, as existence of
a bound state is related to a breakdown of perturbative expansion [4]. These amplitudes
satisfy a system of Lippmann-Schwinger equations [5]. In an algebraic matrix form,⎛⎜⎝ T11
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The solution of Eq. (8) produces the T++ amplitude,

T++ =
1
2

(T11+T12+T21+T22) =
λ

1− iλ Ã
, (9)



where λ =C2−C1 and Ã is a (divergent) integral
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Here E =�p2/2μDD∗ , μDD∗ is the reduced mass of theDD∗ system. The divergence of the
integral of Eq. (10) is removed by renormalization. We chose to define a renormalized
λR within the MS subtraction scheme in dimensional regularization, which does not
introduce any new dimensionfull scales into the problem. In this scheme the integral Ã
is finite, which corresponds to an implicit subtraction of power divergences in Eq. (10).
This implies for the transition amplitude

T++ =
λR

1+(i/8π)λRμDD∗ |�p|
√
1−2μDD∗Δ/�p 2

. (11)

The position of the pole of the molecular state on the energy scale can be read off
Eq. (11),

EPole =
32π2

λ 2Rμ
3
DD∗

−Δ. (12)

Recalling the definition of binding energy Eb and that mD∗ = mD + Δ, we infer

Eb =
32π2

λ 2Rμ
3
DD∗

. (13)

Assuming Eb = 0.5 MeV, which is one sigma below the central value [1], and the
experimental values for the masses, we obtain λR 	 8.4×10−4 MeV−2.
Similar considerations apply to D0D0 state, in which case the starting point is the

Lagrangian term in Eq. (5). Since it involves only a single term, the calculations are
actually easier and involve only one Lippmann-Schwinger equation. The resulting bind-
ing energy is then [5] Eb = (256π2)/(C21Rm

3
D). Examining this we immediately notice

that the existence of a bound state in the D∗D channel does not dictate the properties
of a possible bound state in, say, D0D0 channel, since C1 and C2 are not related to each
other. This work was supported in part by the U.S. National Science Foundation under
Grant PHY–0244853, and by the U.S. Department of Energy under Contract DE-FG02-
96ER41005.

REFERENCES

1. For a review of possible interpretations, see E. S. Swanson, arXiv:hep-ph/0601110;
2. N. A. Törnqvist, Phys. Lett. B 590, 209 (2004); C. Y. Wong, Phys. Rev. C 69, 055202 (2004). F. Close

and P. Page, Phys. Lett. B 578, 119 (2004); E. S. Swanson, Phys. Lett. B 588, 189 (2004).
3. E. Braaten and M. Kusunoki, Phys. Rev. D 69, 074005 (2004).
4. S. Weinberg, Nucl. Phys. B 363, 3 (1991); Phys. Lett. B 251, 288 (1990).
5. M. T. AlFiky, F. Gabbiani and A. A. Petrov, arXiv:hep-ph/0506141.
6. A. V. Manohar and M. B. Wise, “Heavy quark physics,” Camb. Monogr. Part. Phys. Nucl. Phys.

Cosmol. 10, 1 (2000).


